Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths.
نویسندگان
چکیده
DNA sequencing using solid-state nanopores is, in part, impeded by the relatively high noise and low bandwidth of the current state-of-the-art translocation measurements. In this Letter, we measure the ion current noise through sub 10 nm thick Si3N4 nanopores at bandwidths up to 1 MHz. At these bandwidths, the input-referred current noise is dominated by the amplifier's voltage noise acting across the total capacitance at the amplifier input. By reducing the nanopore chip capacitance to the 1-5 pF range by adding thick insulating layers to the chip surface, we are able to transition to a regime in which input-referred current noise (∼ 117-150 pArms at 1 MHz in 1 M KCl solution) is dominated by the effects of the input capacitance of the amplifier itself. The signal-to-noise ratios (SNRs) reported here range from 15 to 20 at 1 MHz for dsDNA translocations through nanopores with diameters from 4 to 8 nm with applied voltages from 200 to 800 mV. Further advances in bandwidth and SNR will require new amplifier designs that reduce both input capacitance and input-referred amplifier noise.
منابع مشابه
Measurement of DNA Translocation Dynamics in a Solid-State Nanopore at 100 ns Temporal Resolution.
Despite the potential for nanopores to be a platform for high-bandwidth study of single-molecule systems, ionic current measurements through nanopores have been limited in their temporal resolution by noise arising from poorly optimized measurement electronics and large parasitic capacitances in the nanopore membranes. Here, we present a complementary metal-oxide-semiconductor (CMOS) nanopore (...
متن کاملIntegrated solid-state nanopore platform for nanopore fabrication via dielectric breakdown, DNA-speed deceleration and noise reduction
The practical use of solid-state nanopores for DNA sequencing requires easy fabrication of the nanopores, reduction of the DNA movement speed and reduction of the ionic current noise. Here, we report an integrated nanopore platform with a nanobead structure that decelerates DNA movement and an insulating polyimide layer that reduces noise. To enable rapid nanopore fabrication, we introduced a c...
متن کاملDifferentiation of short, single-stranded DNA homopolymers in solid-state nanopores.
In the last two decades, new techniques that monitor ionic current modulations as single molecules pass through a nanoscale pore have enabled numerous single-molecule studies. While biological nanopores have recently shown the ability to resolve single nucleotides within individual DNA molecules, similar developments with solid-state nanopores have lagged, due to challenges both in fabricating ...
متن کاملIntegration of solid-state nanopores in microfluidic networks via transfer printing of suspended membranes.
Solid-state nanopores have emerged as versatile single-molecule sensors for applications including DNA sequencing, protein unfolding, micro-RNA detection, label-free detection of single nucleotide polymorphisms, and mapping of DNA-binding proteins involved in homologous recombination. While machining nanopores in dielectric membranes provides nanometer-scale precision, the rigid silicon support...
متن کاملPore Characterization and Event Detection in Solid-State Nanopores
Nanopores are used for DNA sensing. Solid-state nanopores, which are milled through a silicon-based substrate, lack the atomic-level gemoetric precision of biological proteinmediated pores. However, they show great promise due to their greater stability and potential for modification. We developed tools to characterize solid-state nanopores by using their resistance to infer a functional diamet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 14 12 شماره
صفحات -
تاریخ انتشار 2014